Enhancing Potential of Hydro-Floating Solar Hybrid

Mr. Chatchai Mawong

Director - Hydro and Renewable Energy Power Plant Development Division Electricity Generating Authority of Thailand (EGAT)

Table of contents

- EGAT Business
- Thailand Power Development Plan
- EGAT's Potential Development
- Development Guidelines
- Integrated Renewable Firm Power System (IRFPS)
- Pilot Project: Hydro-Floating Solar Hybrid at Sirindhorn Dam

EGAT Business

Generation

To generate electricity by more than 52 power plants located in different parts of the country.

Installed Generating Capacity 16,037.32 MW

Transmission

To solely operate the transmission system. (Main voltage levels 500, 230 and 115 kV.)

Transmission Line Length 37,083.916 Circuit-Kilometers

Power Purchase

To purchase bulk electricity from IPPs and SPPs and from neighboring countries, i.e. Lao PDR and Malaysia.

Contract Capacity

29,443.05 мw

Affiliates

To invest in electricity generation and energy-related businesses in the following 5 affiliates.

EGAT's Investment

34,290.40 Million Baht

EGAT Transformation Roadmap

- 1. Power System Security
 - Natural Gas / Clean Coal
 - Flexible Power Plants

2. Transmission System Development

- 230/500 kV
- Energy Trading
- Energy Storage

3. Smart Grid

- RE Control Center
- National Trading Platform

4. Renewable Energy • Biomass / Biogas / Solar Community Power Plants

5. EV & Energy Storage

- Encourage-Suggest to Prosumers / IPS
- Encourage-Develop EV Charging Station
- Develop Energy Storage System: ESS

Ref. EGAT Annual Report 2020

Thailand Power Development Plan

On April 3, 2021, 21.03 p.m., the overall peak demand of power system was 30,135.30 MW

TNC-CIGRE July 14, 2021

New RE capacity added in PDP 2018 Rev. 1

Renewable Energy Plan	PDP 2018 Revision 1 (2018-2037)
Biomass	2,780
Biogas	400
Solar	8,740
Wind	1,485
Waste	44
Hydro-Floating Solar (EGAT)	2,725
Small Hydro (EGAT)	69
Government's Policy and Community Power Plant	2,453
Total	18,969 MW

Generation By Power Plant Types PDP 2018 Rev. 1

Total Capacity 77,211 MW

EGAT's Potential Development

Development Guidelines

Cost Enable Cost

Reduction

- Utilize unused space
- Utilize existing facilities
- Achieve economy of scale

Technology

- Implement concept of Integrated Renewable Firm Power System (IRFPS) with smart technologies
- Increase flexibility of RE with hybrid system + EMS
- Enhance stability of hybrid generation with technologies
- Enable security of RE in the nation with RECC + AI

Social & Environment

Value Environment and Community Concerns

- Use eco-friendly materials
- Conduct real-time monitoring
 - Improve community's quality of life with "New Landmark"

•

Integrated Renewable Firm Power System (IRFPS)

<u>Daytime</u>

Generate solar power in the daytime

<u>Nighttime</u> Reserve hydropower in the nighttime

<u>Anytime</u> Optimize energy at any time

Project Profile

Capacity : 58.5 MWp (45 MWac) Location : SIRINDHORN DAM, UBON RATCHATHANI Installed Area : 1,216,000 sq.m. (450 RAI) % Water Surface Area : 0.27% Grid-Connection : EGAT System Cost : 842 MB (EPC Only) COD : 2021

Main Equipment

Mooring System

Pouring cement into a mold to form a deadweight concrete

Using a crane to lift the deadweight concrete to the main barge

TNC-CIGRE July 14, 2021

5 Using the anchor winch to adjust the position of the main barge

Loading deadweight concrete onto the transport barge

PV Floating system

Preparing an assembly platform

3 Moving the PV floating array to the installation area

2

Assembling floats and PV Modules on the platform

Process

- Square Array Assembly
- Floating Body Splicing
- Rod Connection
- PV Module Installation
- Installation of Cable Floating Plate, Anchoring Truss, Cable Bracket, Combiner Box Bracket

Connecting the PV floating arrays together and securing to the mooring system

Test and Commissioning

	Test Item (Individual)		
Onshore			Offshore
1. Auxiliary Transformer 50 kVA		1. PV Transformer	
2. Main Equipment (SWGR)		2. Aux Transforme	er 5 kVA
3. Auxiliary System		3. RMU	
4. Metering Equipment		4. PV Panel I-V Cur	rve
5. Relay and Protection		5. PV Ground Syst	em
6. 22kV AC Cable (Power Cable Outgoin	ng Feeder)	6. PV Cable (Solar	Cable)
7. Function Test for SWGR		7. Fiber Optic Cabl	le
8. Grounding System		8. DC Cable	
9. Wet Test for Aux System		9. AC Cable on Flo	oater Boat
10. AC Withstand SWGR 22 kV		10. Inverter	
11. RTU & SCADA Simulate Test		11. Cable Link Box	c (
		12. Fiber Optic Cal	ble
		13. 22 kV Underwa	iter Cable

Main Equipment (SWGR)

Aux Transformer 5 kVA

Inverter

Energy Management System (EMS)

Energy Management System (EMS) is the smart technology integrated with weather forecast information to control, monitor and optimize the performance of hybrid generation.

Concept

Hybrid EMS Dashboard

Benefits

- More firm green energy
- Improve quality of community's life
- Stimulate local economy with new landmark
- Reduce CO2 (0.546 tons/1,000 kWh)
- Reduce water evaporation (10,222 m3/yr./MW)

Thank You

