SMART GRID PILOT PROJECT AND STUDY RESULTS

MAE HONG SON
NATIONAL PILOT PROJECT

Naebboon Hoonchareon
Chulalongkorn University

Technical Seminar
“Future of Renewable Energy and Smart Grid Technologies”
June 20, 2014
PROPOSED CONCEPT

Supply Side
- Green supply portfolio (mainly mini-hydro and solar PV)
- GHG emission reduction (diesel, conventional supply)

Operation Side
- Improved power system reliability and power quality (*frequent fault occurrences due to mudslide and wildfire, all year long*)
- Stand-alone Microgrid operation

Demand Side
- People awareness, leading to effective Demand Responses
- Towards Low Carbon Society
PROPOSED CONCEPT

Policy Side

- Roles of stakeholders (EGAT, PEA/MEA, Third-party, etc.) on
 - Supply side
 - Operation side
 - Demand side
- TSO/DSO/Micro-EMS operational coordination
- Regulatory framework
 - Data/Information accessibility & interchangeability
 - Service licensing
 - Supporting schemes and incentives
The **Smart Grid** pilot site of the nation, as well as of the region (ASEAN), for **Research, Development & Demonstration** through knowledge and technology integration, where the key elements of success are increased *competency* of human resources and *strategic collaboration* among all concerned parties.
ULTIMATE GOALS

- Renewable energy generation above 70%, on yearly average
- Diesel generation being reserved only for emergency and black start
- Improved power system reliability and quality above averages of the country (from the “worst” ones)
- Residents’ awareness leading to active participation in community energy management for Sustainable Development
- Low carbon society with natural disaster mitigation readiness
DESIGN KEY ELEMENTS

- Clear-cut objectives
- Appropriate SG technology selection and deployment
- Strategic collaboration (among utilities, local administration, community, university & research units)
- Sustainable operation (quality assurance, O&M costs, knowledge transfer, etc.)
Normal Condition

• Extraordinarily long 22-kV lines with limited control of only a few AVR (Auto-tab changing Transformer), limited space to install within the conserved land
• Hence, challenges of voltage regulation and huge energy loss incurred!
EXISTING CONDITIONS

Disturbance Condition

• Storm and mudslide during rainy season, wildfire during dry season are unavoidable!
• Hence, service interruption occurs (too) frequently, while still lack of process automation.
EXISTING CONDITIONS

Power Quality Issues on Demand Side

• Faults occur frequently, caused by climate condition
• Flickering, trip reclose due to insufficient monitoring and control
• Unusually often, sustained service interruption
• Shorten electrical appliances’ life cycle, esp. A/C, Refrigerator
PREVIOUS STUDY ON HIGH RE POTENTIAL
MHS Outlooks

National Pilot Project

Zone 1: Pai Green & Low Carbon Community

Zone 2: Mae Hong Son Integrated Demo Site: Sustainable Energy, Disaster Mitigation, Learning Center

Zone 3: Mae Sa Rieng Microgrid by PEA
Enabling Demand Response

PEA: 22 kV feeders

Green Supply

C1: Mini-hydro/ES
C2: Solar farm/ES
C3: Bio & W2E

Pha Bong Diesel Power Plant

Charge

C7: BESS

Discharge

C9: AMR

Weather Info.

Unit Com. Econ Dispatch

Decentralized Control Center

C6: 𝜇EMS
C8: PEA-DMS

V/F Control

DSM&DR

V9: RE Forecast

LFL&AFA

Energy Flow
Information Flow

C10: Communication Protocol, QoS & Security
8 Smart Grid Key Characteristics in MHS Pilot Site

1. Renewable energy forecast & RE integration (comps 1, 6, 9)
2. Solar farm / Solar roof-top integration (comps 2 & 4)
3. Decentralized-Micro Energy Management System (Micro-EMS) with Microgrid operation (comps 6 and all)
4. Energy Storage (Battery) Management (comps 1 & 7)
5. Demand forecast and Demand Response (comps 4, 5, 9)
6. Building Energy Management System (BEMS) and Situational awareness (on demand side) (comps 4 & 9)
7. Electric Vehicle/Bus, Intelligent Charging-Street Lighting, V2H, V2G (comp 5)
8. Interoperability: communication protocol/ open standard/ SCADA (comps 6, 8, 10)
MHS Smart Grid: 3 Development Domains

- **Smart Energy**
 - Solar Farm
 - Battery Energy Storage System
 - Mini Hydro Management

- **Smart System**
 - Renewable Energy and Demand Forecast
 - Micro-Energy Management System
 - PEA-Distribution Management System Integration

- **Smart City**
 - Solar rooftop
 - Smart Billboard
 - Waste-to-Energy
 - Building Energy Management System (BEMS)
 - Electric Vehicle

ICT Integration
You are invited to visit “Thailand Smart Grid Knowledge Hub” on facebook to learn more about SG Technology and System development in Thailand.

THANK YOU FOR YOUR KIND ATTENTION